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1. Context and motivation
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A framework for oo-categories

Categories are like directed graphs, with
objects ~ vertices
morphisms ~ edges / \/

oo-Categories are like simplicial complexes, with

objects ~ vertices
morphisms ~ edges

relations between morphisms ~ higher dimensional faces
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Some simplicial constructions

Simplicial objects

Simplicial sets

Kan complexes
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2. The category of simplicial sets
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The simplex category

The simplex category A has
objects: sets [n] ={0<--- < n}
morphisms:  weakly monotone maps «a : [m] — [n]

Fix 0 <i<n.

o The distinguished inclusions 6" : [n — 1] — [n] are

5,(j):{j ifj<i

J4+1 ifj >

o The distinguished projections o : [n+ 1] — [n] are

S = {j ifj<i

j—1 ifj>i
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Distinguished maps

[n+1]={1<---<i—-1 i<i+1 }
[N={1<---<i—-1 i }
5:’
[n—1={1<---<i—-1 }
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Distinguished inclusions as nondegenerate (n — 1)-faces

i
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Simplicial objects

Let C be a category.

A simplicial object of C is a functor A, : A°? — C.

o Write A, := Aq([n]) for the n-simplices of A,

o If the objects of C are denoted A, B, C,---,
then the simplicial objects are denoted A,, B, Co, - - -

@ In particular, a simplicial set is a presheaf on A, i.e. a functor

Xo : AP — Set .

A simplicial object of C is not an object of C.
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inclusion maps

A3

il

A Az

—

A 1 edges

I

AO vertices

face maps

Ae(0") = d; face maps
As(0') = s; degeneracy maps
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Set

X3
X, X2
—
X1
Xo
inclusion maps face maps
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Example: constant simplicial set

| A Set

[é] X
M
b ox X
Il ‘
I O T
I !
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Example: standard n-simplex

| A Set
[3] Hom ([3], [n])
[2] Af Hom ([2], [n])
mp —
[1] W om0, 1)
[O] Hom ([0], [n])

Casey Blacker Simplicial sets



Simplicial morphisms

A from
Ao i AP = C to Be : A°? — C
is a natural transformation 7. : A, B..
@ We arrive at the category of simplicial objects of C,
Ca = Fun(A°P,C)
also denoted sC, SC, ...

Homc, (Ae, Bo) = Nat(A., B,) -
@ For example, Seta, Aba, Mfda
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A3 B3

A, Az B>
-
—
B A1 By
Ao Bo
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Set

X3 Y3

X, X2 Y2
—
—
Ye X1 Y1
Xo Yo
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Reminder: Yoneda Lemma

For any F : C°P — Set and / € C, there is a canonical bijection

Nat(Home(—, A), F) & F(4)
(ida = x) < x

Moreover, this bi_jection is natural in A and F. (Note: C must be locally small.)

e The Yoneda embedding y : C — Fun(C°P, Set) is given by
y(A) = Home(—, A) : C — Set
e When C = A,

Homge, (AL, Bs) = B
Ba([1])

(unique nondegenerate n-face — x) <« x
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Yoneda embedding

Psh(C) Seta
¥(C) A,
representable
Home(—, A) presheaves Af
C A
A [n]
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3. Nerves
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Sources of simplicial sets

Set

2-Cat

X

Simplicial objects

|

T
i SCtA
X Sing, (X) Xe Aba
Cat Ke(M:) A
c Ne(C)
Mfda
A
[n] A7 A
—
Top-Cat  Kan-Cat

Chxo(Z)

M,

LieGrpd

Casey Blacker Simplicial sets



Idea of the nerve construction

A method for realizing objects A € C as simplicial sets
N.(A) € Seta.

@ Insert A into (, i.e. define a cosimplicial object
C*:A—C.
@ Pull back y(A) = Home(—, A) along C°, i.e. define

No(A) = Hom¢(C®, A).

Ns = "restrict the Yoneda embedding along a cosimplicial object”
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Cosimplicial objects

Let C be category.

A cosimplicial object of C is a functor A® : A — C.

e Write A" := A*([n]).
@ If the objects of C are denoted A, B, C, - - -,
then the cosimplicial objects are denoted A®, B®, C*®,---

or, alternatively, as A2

@ Responds to the question:

What does A “look like" in C?
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C3
C' C2
Em—
Cl
di
CO
inclusions coface maps

Ae(07) = d’ coface maps
A.(c") = s’ codegeneracy maps
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Example: topological simplex functor

Top

3, A
7N : :
0= [3] |A3|

0Z——1 [2] A% |A2‘
mr =
. [1] al
’ [0] |A?] .
|A"| = Conv(ey, ..., enr1) C R
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Example: A — Cat

3 A Cat 3
Vs K\R\\ . . \
[ XP | oY
) B =
2 2
=1 | ,. o =
1l
0——1 [1] [1] 0——1
0 [0] [0] 0
elements sets & functions categories & functors objects & morphisms
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Example: normalized Moore complex of A"

3 A\ Ch(Z)ZO

2RO\ )

/X2
01 [3] N.(A3,Z) | 2[B% - Z[AY] - Z[A3] - Z[A]]

el

1
051 2] N.(A*,Z) | N.(A%Z) ZIB3) - ZIA3) - Z[A])
0——1 [1] N.(A',Z) Z[A]] — Z[A)]
0 [0] N.(A°, 7) Z[A]

A" are the nondegenerate faces of A”

9=>(=1)"d
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The nerve construction

Fix a
@ cosimplicial object C*: A — C,
@ object A eC.

The nerve of A with respect to C*® is the simplicial set

No(A) = Home(C®, A).

@ The nerve defines a functor N, : C — Seta.
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C Set

C3 H()Tnc(c3‘A)
2 (2
ce C HOIHC(—. A) Home (C%, A)
— Em—
B H B.A
C]. £ f:IHM( ) Homc(Cl, A)
cosymplicial
object y(A)
Cco Homc (€0, A)

No(A) = Hom¢(C®, A)
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Set

Home(C3, A) Home(C3, B)
Home(C?, Home(C?,
Home(C*, A) el ) el )
—_—
—_—
Home(C*, B) Home(CY, A) Home(CY, B)
Home(C2, A) Home(CO, B)
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Example: singular simplicial complex

A Top Set
[3] |A3‘ IIomTr,p(|A3\,X)
[2] |A° |A2 ‘ Homgop(—, X) Hom oy (|A2], X)
m = =
[1] ‘Al‘ HomTop(|Al\,X)
cosymplicial
object y(X)
[0] ’An| HomTop(|A0\,X)

Sing,(X) = Homrep (|A®], X)
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cosimplicial object nerve

Top |A®] Sing, (X) = Homrop(|A®], X)

Cat inclusion N¢(C) = Homgai([e],C)

Ch>0(Z) N.(A*,Z) Ke(M.) = Homey_z)(N«(A®, Z), M..)
A ida [n] — A"

Set [n] — {x} X=X

Top-Cat topological nerve

Kan-Cat simplicial nerve

2-Cat Duskin nerve
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4. Realizations
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C Seta

A N, No(A)
—_
-
R(X.) T Xe

Home(R(X.),A) = Homges, (Xo, No(A))
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Preliminary discussion

Recall that

H Al X)) =2 X
OmSetA( *’ )Yoneda "

In particular,

1%

Homget, (A, No(A)) N,(A) := Home(C", A) .
So

r:y(A)C Setp — C
Al — C"

satisfies

Home(r(A]),A) = Homge, (A7, No(A))

Casey Blacker Simplicial sets



Facts from category theory

Let D be small and C cocomplete (e small colimts exist)

@ Every F € Psh(D) is a colimit of representables

F = coli D
e o)

@ Every functor
r:y(D)—C

has a colimit-preserving extension
R: Psh(D) — C
colim y (D) — colim r(y(D))
© with right adjoint
N : C — Psh(D)
A Home(r(—), A)
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Application to A

@ Every S, € Setp is a colimit of representables

F = colim A]

ATF

@ Every functor

r*ry(A)—=C

has a colimit-preserving extension
R: Setph — C
colim A] — colim r(AY)

© with right adjoint

N :C — Seta
A= HOInc(f', A) “restriction of Homg (—, A) along r"

@ Rearranging:
No(A) = Home(r®, A)
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Example: geometric realization

Top Seta
X Sing, Sing, (X)
_—
‘A”| i A" representable
° ¢ .
Is.| |- 5.

Home(|AL], X) = Homge, (A1, Sing, (X))

Home(|Se|, X) = Homget, (Se, Sing, (X))
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Example: homotopy category of a simplicial set

Cat Seta
c N, Ne(C)
_—
T A n
[n] . representable
hS, h Se

Homgcyy([n], C) = Homget, (AL, Sing, (C))
Homcat(hSe, C) = Homget, (Se, Sing,(C))

Ob(hS,) — So
Mor(hS.) = <51 |50X =1idy, dio = dgo o dho, x € So,U € 52>
s(e) = die, t(e) = dpe
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5. Kan complexes
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Horns

Fix0<i<n

The boundary OA" € Seta of Al is given by

(OA")m = {a € A}, : «ais not surjective }

o OAC AT

@ JA" = “remove the interior of A™"

The ith horn A7 € Seta of A{ is given by
(A)m={a €Ay, : [n] £ a([m]) U {i}}

o A7 C QA"

e A? = "“remove the ith face of OA™ "
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Low-dimensional horns

3 3 3 3
/”‘ 2 \ DY /§2
3+ &y N
3 : : o
041 0-——1 0/1 0 1
2 2 2
2 / T /T
05— 0——1 0 1
n
1 0 1
n
Aj
00
0 1 2 3

i

Casey Blacker Simplicial sets



Kan complexes

We say that X, € Seta is a Kan complex if every simplicial map

oy - /\7 — X
extends to a simplicial map
o: A" = X,

@ “Every horn in X, can be filled”

@ i.e. X, satisfies the horn-filling condition:

o0
AN ——

-
’
s
’
’
s
, g
’
s

A"
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Example: Sing,

Every horn oq in Sing,(X)

‘/\n X
i 00

extends to a simplex o by projecting |A"| to |7

X
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Non-example: nerves of categories

a
bS

\,\,
%>D'

a
®

Co
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Example: nerves of groupoids

C

ida
Y
A
2
% f
B

)

idg

Uniqueness of composition and inverses = uniqueness of extensions
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