Simplicial sets

Casey Blacker

Higher Geometry Learning Seminar

February 2, 2023

Outline

- Context and motivation
- The category of simplicial sets
- Nerves
- Realizations
- 6 Kan complexes

1. Context and motivation

A framework for ∞ -categories

Categories are like directed graphs, with

$$\begin{array}{l} \text{objects} \sim \text{vertices} \\ \text{morphisms} \sim \text{edges} \end{array}$$

 ∞ -Categories are like *simplicial complexes*, with

 ${\sf objects} \sim {\sf vertices} \\ {\sf morphisms} \sim {\sf edges} \\$

relations between morphisms \sim higher dimensional faces

Some simplicial constructions

Simplicial objects

2. The category of simplicial sets

The simplex category

Definition

The simplex category Δ has

objects: sets
$$[n] = \{0 \le \cdots \le n\}$$
 morphisms: weakly monotone maps $\alpha : [m] \to [n]$

Fix $0 \le i \le n$.

ullet The distinguished inclusions $\delta^i:[n-1] o [n]$ are

$$\delta^{i}(j) = \begin{cases} j & \text{if } j < i \\ j+1 & \text{if } j \ge i \end{cases}$$

ullet The distinguished projections $\sigma^i:[n+1]
ightarrow [n]$ are

$$\sigma^{i}(j) = \begin{cases} j & \text{if } j \leq i \\ j-1 & \text{if } j > i \end{cases}$$

Distinguished maps

$$[n+1] = \{1 \le \dots \le i-1 \le i \le i+1 \le i+2 \le \dots \le n+1\}$$

$$\downarrow \sigma^{i}$$

$$[n] = \{1 \le \dots \le i-1 \le i \le i+1 \le \dots \le n\}$$

$$\uparrow \delta^{i}$$

$$[n-1] = \{1 \le \dots \le i-1 \le i \le \dots \le n-1\}$$

Distinguished inclusions as nondegenerate (n-1)-faces

$$\delta^i:[n-1]\to[n]$$

The category Δ and maps δ^i

Simplicial objects

Let \mathcal{C} be a category.

Definition

A simplicial object of \mathcal{C} is a functor $A_{\bullet}: \Delta^{\mathrm{op}} \to \mathcal{C}$.

- Write $A_n := A_{\bullet}([n])$ for the *n*-simplices of A_{\bullet}
- If the objects of C are denoted A, B, C, \dots , then the simplicial objects are denoted $A_{\bullet}, B_{\bullet}, C_{\bullet}, \dots$
- In particular, a simplicial set is a presheaf on Δ , i.e. a functor

$$X_{ullet}: \Delta^{\mathrm{op}} o \mathrm{Set}$$
 .

Warning!

A simplicial object of C is **not** an object of C.

$$A_{\bullet}(\delta^i) = d_i$$
 face maps $A_{\bullet}(\sigma^i) = s_i$ degeneracy maps

Example: constant simplicial set

Example: standard *n*-simplex

Simplicial morphisms

Definition

A simplicial morphism from

$$A_{\bullet}: \Delta^{\mathrm{op}} \to \mathcal{C}$$
 to $B_{\bullet}: \Delta^{\mathrm{op}} \to \mathcal{C}$

$$B_ullet$$
 : $\Delta^{
m op} o 0$

is a natural transformation $f_{\bullet}: A_{\bullet} \longrightarrow B_{\bullet}$.

• We arrive at the category of simplicial objects of \mathcal{C} ,

$$\mathcal{C}_{\Delta} = \operatorname{Fun}(\Delta^{\operatorname{op}}, \mathcal{C})$$

also denoted sC, SC, ...

$$\operatorname{Hom}_{\mathcal{C}_\Delta}(A_\bullet,B_\bullet)=\operatorname{Nat}(A_\bullet,B_\bullet)\;.$$

For example,

$$\operatorname{Set}_{\Delta}$$
, $\operatorname{Ab}_{\Delta}$, $\operatorname{Mfd}_{\Delta}$

Reminder: Yoneda Lemma

Yoneda Lemma

For any $F:\mathcal{C}^{\mathrm{op}} \to \mathrm{Set}$ and $A \in \mathcal{C}$, there is a canonical bijection

$$\operatorname{Nat}(\operatorname{Hom}_{\mathcal{C}}(-,A),F) \cong F(A)$$

 $(\operatorname{id}_A \mapsto x) \leftrightarrow x$

Moreover, this bijection is natural in A and F. (Note: C must be locally small.)

ullet The Yoneda embedding $y:\mathcal{C} o \operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set})$ is given by

$$y(A) = \operatorname{Hom}_{\mathcal{C}}(-, A) : \mathcal{C} \to \operatorname{Set}$$

• When $C = \Delta$,

$$\operatorname{Hom}_{\operatorname{Set}_{\Delta}}(\Delta_{\bullet}^{n}, B_{\bullet}) \cong B_{n}$$

 $\operatorname{Nat}(\operatorname{Hom}(-,[n]), B_{\bullet}) \cong B_{\bullet}([n])$

(unique nondegenerate *n*-face $\mapsto x$) $\leftrightarrow x$

Yoneda embedding

3. Nerves

Sources of simplicial sets

Idea of the nerve construction

A method for realizing objects $A \in \mathcal{C}$ as simplicial sets $N_{\bullet}(A) \in \operatorname{Set}_{\Delta}$.

1 Insert \triangle into \mathcal{C} , i.e. define a cosimplicial object

$$C^{\bullet}: \Delta \to \mathcal{C}$$
.

2 Pull back $y(A) = \operatorname{Hom}_{\mathcal{C}}(-, A)$ along C^{\bullet} , i.e. define

$$N_{\bullet}(A) = \operatorname{Hom}_{\mathcal{C}}(C^{\bullet}, A).$$

N₀ = "restrict the Yoneda embedding along a cosimplicial object"

Cosimplicial objects

Let \mathcal{C} be category.

Definition

A cosimplicial object of C is a functor $A^{\bullet}: \Delta \to C$.

- Write $A^n := A^{\bullet}([n])$.
- If the objects of $\mathcal C$ are denoted A,B,C,\cdots , then the cosimplicial objects are denoted $A^\bullet,B^\bullet,C^\bullet,\cdots$ or, alternatively, as $\Delta_{\mathcal C}^\bullet$
- Responds to the question:

What does Δ "look like" in C?

$$A_{ullet}(\delta^i) = d^i$$
 coface maps $A_{ullet}(\sigma^i) = s^i$ codegeneracy maps

Example: topological simplex functor

$$|\Delta^n| = \operatorname{Conv}(e_1, \dots, e_{n+1}) \subseteq \mathbb{R}^{n+1}$$

Example: $\Delta \hookrightarrow \operatorname{Cat}$

Example: normalized Moore complex of Δ^n

 $ar{\Delta}^n$ are the nondegenerate faces of Δ^n $\partial = \sum_i \left(-1\right)^i d_i$

The nerve construction

Fix a

- **1** cosimplicial object $C^{\bullet}: \Delta \to \mathcal{C}$,
- **2** object $A \in C$.

Definition

The nerve of A with respect to C^{\bullet} is the simplicial set

$$N_{\bullet}(A) = \operatorname{Hom}_{\mathcal{C}}(C^{\bullet}, A).$$

• The nerve defines a functor $N_{\bullet}: \mathcal{C} \to \operatorname{Set}_{\Delta}$.

$$N_{\bullet}(A) = \operatorname{Hom}_{\mathcal{C}}(C^{\bullet}, A)$$

$$A \xrightarrow{f} B$$

Example: singular simplicial complex

$$\operatorname{Sing}_{\bullet}(X) = \operatorname{Hom}_{\operatorname{Top}}(|\Delta^{\bullet}|, X)$$

Examples

category	cosimplicial object	nerve
Top Cat $Ch_{\geq 0}(\mathbb{Z})$	$ \Delta^{ullet} $ inclusion $N_*(\Delta^{ullet},\mathbb{Z})$	$egin{aligned} \operatorname{Sing}_{ullet}(X) &= \operatorname{Hom}_{\operatorname{Top}}(\Delta^{ullet} , X) \ N_{ullet}(\mathcal{C}) &= \operatorname{Hom}_{\operatorname{Cat}}([ullet], \mathcal{C}) \ K_{ullet}(M_*) &= \operatorname{Hom}_{\operatorname{Ch}_{\geq 0}(\mathbb{Z})}(N_*(\Delta^{ullet}, \mathbb{Z}), M_*) \end{aligned}$
Δ Set	$\mathrm{id}_{\Delta} \\ [n] \mapsto \{*\}$	$[n] \mapsto \Delta^n$ $X \mapsto \underline{X}$
Top-Cat Kan-Cat 2-Cat		topological nerve simplicial nerve Duskin nerve

4. Realizations

Idea

$$\operatorname{Hom}_{\mathcal{C}}(R(X_{\bullet}),A) \cong \operatorname{Hom}_{\operatorname{Set}_{\Delta}}(X_{\bullet}, N_{\bullet}(A))$$

Preliminary discussion

Recall that

$$\operatorname{Hom}_{\operatorname{Set}_{\Delta}}(\Delta_{\bullet}^{n}, X_{\bullet}) \cong X_{n}$$

In particular,

$$\operatorname{Hom}_{\operatorname{Set}_{\Delta}}(\Delta_{\bullet}^n, \, N_{\bullet}(A)) \ \cong \ N_n(A) \, := \, \operatorname{Hom}_{\mathcal{C}}({\boldsymbol{C}}^n, A) \, .$$

So

$$r: y(\Delta) \subseteq \operatorname{Set}_{\Delta} \longrightarrow \mathcal{C}$$

 $\Delta_{\bullet}^{n} \longmapsto \mathcal{C}^{n}$

satisfies

$$\operatorname{Hom}_{\mathcal{C}}(r(\Delta^n_{\bullet}), A) \cong \operatorname{Hom}_{\operatorname{Set}_{\Delta}}(\Delta^n_{\bullet}, N_{\bullet}(A))$$

Facts from category theory

Let ${\mathcal D}$ be small and ${\mathcal C}$ cocomplete (i.e. small colimts exist)

1 Every $F \in Psh(\mathcal{D})$ is a colimit of representables

$$F = \operatorname*{colim}_{y(D) \to F} y(D)$$

② Every functor

$$r: y(\mathcal{D}) \to \mathcal{C}$$

has a colimit-preserving extension

$$R: \operatorname{Psh}(\mathcal{D}) \longrightarrow \mathcal{C}$$
 $\operatorname{colim} y(D) \longmapsto \operatorname{colim} r(y(D))$

with right adjoint

$$N: \mathcal{C} \to \mathrm{Psh}(\mathcal{D})$$

$$A \mapsto \mathrm{Hom}_{\mathcal{C}}(r(-), A)$$

Application to Δ

1 Every $S_{\bullet} \in \operatorname{Set}_{\Delta}$ is a colimit of representables

$$F = \underset{\Delta_{\bullet}^n \to F}{\operatorname{colim}} \ \Delta_{\bullet}^n$$

Every functor

$$r^{\bullet}: y(\Delta) \to \mathcal{C}$$

has a colimit-preserving extension

$$\begin{array}{ccc} R: & \operatorname{Set}_{\Delta} & \longrightarrow & \mathcal{C} \\ & \operatorname{colim} \Delta_{\bullet}^{n} & \longmapsto \operatorname{colim} r(\Delta_{\bullet}^{n}) \end{array}$$

with right adjoint

$$egin{aligned} \mathcal{N}: \mathcal{C} & o \operatorname{Set}_{\Delta} \ & \mathcal{A} &\mapsto \operatorname{Hom}_{\mathcal{C}}(r^ullet, \mathcal{A}) \end{aligned}$$
 "restriction of $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{A})$ along r^r

Rearranging:

$$N_{\bullet}(A) = \operatorname{Hom}_{\mathcal{C}}(r^{\bullet}, A)$$

Example: geometric realization

$$\operatorname{Hom}_{\mathcal{C}}(|\Delta_{\bullet}^{n}|,X) \cong \operatorname{Hom}_{\operatorname{Set}_{\Delta}}(\Delta_{\bullet}^{n},\operatorname{Sing}_{\bullet}(X))$$

 $\operatorname{Hom}_{\mathcal{C}}(|S_{\bullet}|,X) \cong \operatorname{Hom}_{\operatorname{Set}_{\Delta}}(S_{\bullet},\operatorname{Sing}_{\bullet}(X))$

Example: homotopy category of a simplicial set

$$\operatorname{Hom}_{\operatorname{Cat}}([n], \mathcal{C}) \cong \operatorname{Hom}_{\operatorname{Set}_{\Delta}}(\Delta_{\bullet}^{n}, \operatorname{Sing}_{\bullet}(\mathcal{C}))$$

$$\operatorname{Hom}_{\operatorname{Cat}}(hS_{\bullet},\mathcal{C}) \cong \operatorname{Hom}_{\operatorname{Set}_{\Delta}}(S_{\bullet},\operatorname{Sing}_{\bullet}(\mathcal{C}))$$

$$\begin{aligned} \operatorname{Ob}(\mathbf{h}S_{\bullet}) &= S_0 \\ \operatorname{Mor}(\mathbf{h}S_{\bullet}) &= \langle S_1 \,|\, s_0 x = \operatorname{id}_x, \ d_1 \sigma = d_0 \sigma \circ d_2 \sigma, \ x \in S_0, \sigma \in S_2 \rangle \\ s(e) &= d_1 e, \ t(e) = d_0 e \end{aligned}$$

5. Kan complexes

Horns

Fix $0 \le i \le n$.

Definition

The boundary $\partial \Delta^n \in \operatorname{Set}_{\Delta}$ of Δ^n_{\bullet} is given by

$$(\partial \Delta^n)_m = \{ \alpha \in \Delta^n_m : \alpha \text{ is not surjective} \}$$

- $\partial \Delta \subseteq \Delta^n_{\bullet}$
- $\partial \Delta^n =$ "remove the interior of Δ^n "

Definition

The *i*th horn $\Lambda_i^n \in \operatorname{Set}_{\Delta}$ of Δ_{\bullet}^n is given by

$$(\Lambda_i^n)_m = \{\alpha \in \Delta_m^n : [n] \not\subseteq \alpha([m]) \cup \{i\}\}$$

- $\Lambda_i^n \subseteq \partial \Delta^n$
- Λ_i^n = "remove the *i*th face of $\partial \Delta^n$ "

Low-dimensional horns

Kan complexes

Definition

We say that $X_{\bullet} \in \operatorname{Set}_{\Delta}$ is a Kan complex if every simplicial map

$$\sigma_0:\Lambda_i^n\to X_{\bullet}$$

extends to a simplicial map

$$\sigma:\Delta^n\to X_{\bullet}$$

- "Every horn in X_● can be filled"
- i.e. X_• satisfies the horn-filling condition:

Example: $\operatorname{Sing}_{\bullet}(X)$

Every horn σ_0 in $\operatorname{Sing}_{\bullet}(X)$

extends to a simplex σ by projecting $|\Delta^n|$ to $|\Lambda_i^n|$

Non-example: nerves of categories

Example: nerves of groupoids

Uniqueness of composition and inverses \implies uniqueness of extensions